Time-resolved luminescence resonance energy transfer imaging of protein-protein interactions in living cells.

نویسندگان

  • Harsha E Rajapakse
  • Nivriti Gahlaut
  • Shabnam Mohandessi
  • Dan Yu
  • Jerrold R Turner
  • Lawrence W Miller
چکیده

Förster resonance energy transfer (FRET) with fluorescent proteins permits high spatial resolution imaging of protein-protein interactions in living cells. However, substantial non-FRET fluorescence background can obscure small FRET signals, making many potential interactions unobservable by conventional FRET techniques. Here we demonstrate time-resolved microscopy of luminescence resonance energy transfer (LRET) for live-cell imaging of protein-protein interactions. A luminescent terbium complex, TMP-Lumi4, was introduced into cultured cells using two methods: (i) osmotic lysis of pinocytic vesicles; and (ii) reversible membrane permeabilization with streptolysin O. Upon intracellular delivery, the complex was observed to bind specifically and stably to transgenically expressed Escherichia coli dihydrofolate reductase (eDHFR) fusion proteins. LRET between the eDHFR-bound terbium complex and green fluorescent protein (GFP) was detected as long-lifetime, sensitized GFP emission. Background signals from cellular autofluorescence and directly excited GFP fluorescence were effectively eliminated by imposing a time delay (10 micros) between excitation and detection. Background elimination made it possible to detect interactions between the first PDZ domain of ZO-1 (fused to eDHFR) and the C-terminal YV motif of claudin-1 (fused to GFP) in single microscope images at subsecond time scales. We observed a highly significant (P<10(-6)), six-fold difference between the mean, donor-normalized LRET signal from cells expressing interacting fusion proteins and from control cells expressing noninteracting mutants. The results show that time-resolved LRET microscopy with a selectively targeted, luminescent terbium protein label affords improved speed and sensitivity over conventional FRET methods for a variety of live-cell imaging and screening applications.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Photophysical Processes Exploited in Digital Imaging Microscopy: Fluorescence Resonance Energy Transfer and Delayed Luminescence

The spectroscopic techniques of fluorescence resonance energy transfer and of time-resolved delayed fluorescence and phosphorescence have been introduced into a microscope equipped with a solid-state CCD camera and phase-locked excitation and emission choppers. The distribution and replication of DNA in cells has been quantitated by these methods, as well as by confocal laser scanning microscop...

متن کامل

Subcellular imaging of dynamic protein interactions by bioluminescence resonance energy transfer.

Despite the fact that numerous studies suggest the existence of receptor multiprotein complexes, visualization and monitoring of the dynamics of such protein assemblies remain a challenge. In this study, we established appropriate conditions to consider spatiotemporally resolved images of such protein assemblies using bioluminescence resonance energy transfer (BRET) in mammalian living cells. U...

متن کامل

Imaging protein interactions with bioluminescence resonance energy transfer (BRET) in plant and mammalian cells and tissues.

FRET is a well established method for cellular and subcellular imaging of protein interactions. However, FRET obligatorily necessitates fluorescence excitation with its concomitant problems of photobleaching, autofluorescence, phototoxicity, and undesirable stimulation of photobiological processes. A sister technique, bioluminescence resonance energy transfer (BRET), avoids these problems becau...

متن کامل

Molecular Imaging: FLIM-FRET Microscopy

Molecular interactions in living cells are dynamic, and techniques that rely on chemical fixation or disruption of cell structure can provide only limited information about these interactions. Technological advances in light microscopy imaging, combined with the availability of genetically encoded fluorescent proteins now provide the tools to obtain spatial and temporal distribution of protein ...

متن کامل

Quantitative imaging of protein interactions in the cell nucleus.

Over the past decade, genetically encoded fluorescent proteins have become widely used as noninvasive markers in living cells. The development of fluorescent proteins, coupled with advances in digital imaging, has led to the rapid evolution of live-cell imaging methods. These approaches are being applied to address biological questions of the recruitment, co-localization, and interactions of sp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 107 31  شماره 

صفحات  -

تاریخ انتشار 2010